Simultaneous quantitative recognition of all purines including N6-methyladenine via the host-guest interactions on a Mn-MOF

نویسندگان

چکیده

•Unmodified MOF sensor recognizes all known purine nucleobases, including N6-mA•Characteristic host-guest interactions are accurately monitored by electrochemistry•DFT and synchrotron techniques clearly illustrate the structures N6-methyladenine (N6-mA) has been found as third nucleobase for construction of eukaryotic organism DNA, its detection is thus great value. By making use specific interactions, we have used a Mn-MOF material quantitatively detecting N6-mA to simultaneously recognize three nucleobases with simple process, low cost, good sensibility, accurate selectivity, high stability, reusability, well excellent capacity anti-interference. Theoretical calculations were successfully semiconductor feature structure between frameworks molecules, process corresponding mechanism investigated. This work should broaden application field MOFs may contribute investigation in organisms. Purine elementary building blocks life. In addition traditional adenine (A) guanine (G), only very recently was an essential aspect research genetic engineering, molecular biology, life evolution. We show here manganese metal-organic framework (Mn-MOF) Mn-centered paddle-wheel secondary units feature, which first N6-mA, via promising reusability investigate discrimination process. Our supplies new strategy simultaneous quantitative design functional applications materials. life, whose recognition one aspects Adenine (G) two traditionally while possible importance understanding composition tracing origin evolution life.1Heyn H. Esteller M. An code DNA: second N6-methyladenine.Cell. 2015; 161: 710-713Abstract Full Text PDF PubMed Scopus (114) Google Scholar, 2Fu Y. Luo G.Z. Chen K. Deng X. Yu Han D. Hao Z. Liu J. Lu Dore L.C. et al.N6-methyldeoxyadenosine marks active transcription start sites Chlamydomonas.Cell. 879-892Abstract (308) 3Zhang G. Huang Cheng Zhang W. Yin R. P. al.N6-methyladenine DNA modification Drosophila.Cell. 893-906Abstract (389) 4Greer E.L. Blanco M.A. Gu L. Sendinc E. Aristizabal-Corrales Hsu C.H. Aravind He C. Shi Methylation on N6-Adenine C.elegans.Cell. 868-878Abstract (403) 5Wu T.P. Wang T. Seetin M.G. Lai Zhu S. Lin Byrum S.D. Mackintosh S.G. Zhong al.DNA methylation N6-adenine mammalian embryonic stem cells.Nature. 2016; 532: 329-333Crossref (383) 6Xie Q. Wu Gimple R.C. Sloan A.E. Xiao A.Z. Rich J.N. glioblastoma.Cell. 2018; 175: 1228-1243Abstract (151) 7Xiao C.L. Xie S.Q. F. human genome.Mol. Cell. 71: 306-318Abstract (257) 8Zhu Beaulaurier Deikus Strahl Gregory J.A. Chess A. al.Mapping characterizing genomes using single-molecule real-time sequencing.Genome Res. 28: 1067-1078Crossref (46) 9Sarah Charlotte Rene Olesea Jessica Alexandra-Viola B. Fabio Stylianos Jçrg N. Markus Thomas Quantitative LC–MS provides no evidence m6dA or m4dC genome mouse cells tissues.Angew. Chem. Int. Ed. 2017; 56: 11268-11271Crossref (71) 10Kweon S.-M. Moon Kvederaviciute Klimasauskas Feldman D.E. adversarial N6-methyladenine-sensor network preserves polycomb silencing.Mol. 2019; 74: 1138-1147Abstract (64) Scholar kind additional methylated base, results from post-replicative methylases normally present prokaryotes limited number eukaryotes, but several important reports intended expand list organisms diverse organisms,2Fu even mammals such human.5Wu Until now, few methods, N6-mA-methylated immunoprecipitation followed sequencing, single ultra-high-performance liquid chromatography-triple-quadrupole mass spectrometry coupled multiple-reaction monitoring analysis, ultrasensitive triple-quadrupole combination ultra-high-pressure chromatography, developed nucleic acids.5Wu These methods excellent, shortcomings, tedious pretreatment steps, requirement highly skilled personnel, restrict their routine research. New facile, low-cost, time-saving strategies detect discriminate desired. Metal-organic (MOFs) class porous complexes fantastic potential covering different areas, environmental recovery,11Ding M.L. Flaig R.W. Jiang H.L. Yaghi O.M. Carbon capture conversion MOF-based materials.Chem. Soc. Rev. 48: 2783-2828Crossref 12Ricco Styles M.J. Falcaro devices removal pollutants.in: Frameworks Environmental Applications. Vol. 12. Elsevier, 2019: 383-426Google 13Wang Lustig W.P. Li Sensing toxic hazardous gases vapors frameworks.Chem. 47: 4729-4756Crossref storage,14Xue D.X. Bai Amide-functionalized frameworks: syntheses, improved gas storage separation properties.Coord. 378: 2-16Crossref (171) 15Li Sun Lollar C.T. Zhou H.C. Recent advances frameworks.Mater. Today. 21: 108-121Crossref (799) 16Pang Su Yuan Hong A ultrahigh acetylene uptake under ambient conditions.Nat. Commun. 6: 7575Crossref (213) separation,17Li R.-B. Krishna Xiang B.L. Ethane/ethylene iron-peroxo sites.Science. 362: 443-446Crossref (462) 18Wang Dong Teat S.J. Jensen Cure Alexandrov E.V. Xia Tan al.Topologically guided tuning Zr-MOF pore selective C6 alkane isomers.Nat. 9: 1745Crossref (176) 19Qiu Xue membranes: synthesis application.Chem. 2014; 43: 6116-6140Crossref biology,20Cai Y.L. Biological structures, chemistry bio-applications.Coord. 207-221Crossref (193) Scholar,21Xu L.L. H.F. Ng S.W. Feng J.H. Mao J.G. Chiroptical activity achiral biological framework.J. Am. 140: 11569-11572Crossref (22) catalysis,22Cao C.C. C.X. Wei Z.W. Qiu Q.F. N.X. Xiong Y.Y. J.J. C.Y. Catalysis through dynamic spacer installation multivariate functionalities frameworks.J. 141: 2589-2593Crossref (69) 23Li Ma Silica-protection-assisted encapsulation Cu2O nanocubes into (ZIF-8) provide composite catalyst.Angew. 57: 6834-6837Crossref (104) 24Zhang Dai Zheng Novel MOF-derived [email protected] bifunctional catalysts efficient Zn-Air batteries water splitting.Adv. Mater. 30: 1705431Crossref (608) 25Liu X.H. Niu Yang G.M. nanoscale heterogeneous catalyst carbon dioxide at pressure.Angew. 54: 988-991Crossref (232) applied ionic recent decades.26Lee Kapustin E.A. Coordinative alignment molecules chiral frameworks.Science. 353: 808-811Crossref (208) 27Dolgopolova Rice A.M. Martin C.R. Shustova N.B. Photochemistry photophysics MOFs: steps towards sensing enhancements.Chem. 4710-4728Crossref 28Gui Meng Tian Zeng Gong Tuning photoinduced electron transfer Zr-MOF: toward solid-state fluorescent switch turn-on sensor.Adv.Mater. 1802329Crossref (83) Due controlled porosity, large internal surface area, countless structural conformations, adjustable substituents, able adsorb interact target species, characteristic be physical means photoluminescence electrochemistry achieve detection.29Souto Romero Calbo Vitorica-Yrezabal I.J. Zafra J.L. Casado Orti Walsh Espallargas Breathing-dependent redox tetrathiafulvalene-based 10562-10569Crossref (48) 30Ling Liew Pan Ning Xu Materials implantable nutrient flexible sensors integrated frameworks.Adv. 1800917Crossref (52) 31Wu X.Q. P.Q. Design Zn-MOF biosensor ligand ‘‘lock’’ distinction S-containing amino acids.Chem. (Camb.). 55: 4059-4062Crossref 32Wu D.M. stability selectivity bio-mimic environment.Chem. 51: 9161-9164Crossref 33Yang Kinoshita Yamada Kanda Kitagawa Tokunaga Ishimoto Ogura Nagumo Miyamoto Koyama electrocatalyst ethanol oxidation.Angew. 2010; 49: 5348-5351Crossref (143) addition, state-of-the-art third- fourth-generation powder X-ray diffraction (PXRD) exceptionally spatial resolution PXRD data, benefits channels,34Cho H.S. Miyasaka Cho Neimark A.V. Kang J.K. Terasaki O. Extra adsorption adsorbate superlattice formation frameworks.Nature. 527: 503-507Crossref (168) 35Cho Y.B. Momma Weckhuysen B.M. Isotherms individual pores crystallography.Nat. 11: 562-570Crossref (53) 36Peng Bie Cong Tang precise inclusion single-stranded transfection immune cells.Nat. 1293Crossref (112) 37Jiang Ding Oleynikov Jia al.Filling metal–organic mesopores TiO2 CO2 photoreduction.Nature. 2020; 586: 549-554Crossref (181) radiation technology will helpful exploring guest molecules. Compared other fast, easy-to-manipulate strategy. On hand, because unique confinement effect designed can expected well. Herein, report unit (SBU) formula {[Mn3(TATAB)2(H2O)3]·2.5H2O·3.5DMA}n (1; H3TATAB = 4,4?,4?-[(1,3,5-triazine-2,4,6-triyl)tris(azanediyl)]tribenzoic acid). 1 exhibits types SBUs 1D channels, enable A, G, N6-mA. Benefiting electrochemical 1, these caught signals, shows example applying discriminating DNA. charge density, mechanism. Compound obtained colorless rodlike crystals hydrothermal reaction MnCl2·4H2O H3TATAB, rigid skeleton conjugate ? electronic conductivity MOF. Single-crystal (SCXRD) analysis revealed that 3D two-fold interpenetrated crystallizing monoclinic space group C2/m. The asymmetric consists 1.5 crystallographically independent MnII ions, coordinated H2O (1.25 ?1-H2O 0.25 ?2-H2O ?4-H2O), TATAB3? ligand. ions coordination environments. As shown Figure 1B, five-coordinated connected four carboxylate groups ligands give Mn2(O2CR)4 SBU Mn···Mn distance 3.102(2) Å, axial paddle wheel occupied Mn-Oligand bond distances range 2.110(4) 2.127(4) Mn-Owater length 2.078(6) Å. Another tetranuclear (Figures 1C 1D), MnII, eight groups, H2O. Each oxygen atoms form distorted octahedral configuration. atom structure. [Mn4(?4-H2O)(?1-H2O)2(O2CR)8] [Mn4(?2-H2O)(?1-H2O)4(O2CR)8] observed this due being disordered. further framework, containing kinds diameters 5.0 × 7.3, 6.8 8.6, 12.5 12.9 Å along axis (Figure 1E). total volume open channels about 49.1%, calculated PLATON program. Topologically, each anion bridges units; thus, it regarded three-connected node. acts four-connected node linking TATAB3?; simplified eight-connected linked TATAB3?. described (3,4,8) Schläfli symbol {4·82}4{412·812 104}{86}, belongs spc929-type topology S1). solid structure, phase purity, examined high-resolution PXRD. sharp peaks prove crystallinity samples. All Bragg fitted 1's indicates purity samples S2). situ temperature-dependent patterns stable room temperature up 170°C 2). Then showed transformation lower-symmetry crystal system splitting, release lattice solvents according thermogravimetric (TGA) data S4). collapsed 220°C high-temperature phase, became complete amorphous above 400°C agreement TGA results. To confirm valence Mn photoelectron spectroscopy carried out. S5, pair binding energy 651.2 639.50 eV observed, 2p1/2 2p3/2 MnII.38Nesbitt H.W. Banerjee Interpretation XPS Mn(2p) spectra oxyhydroxides constraints MnO2 precipitation.Am. Mineral. 1998; 83: 305-315Crossref (831) result +2 consistent SCXRD data. behavior purines immersed solutions obtain “1 + purine” systems, significant peak position changes 3), confirms solution-state environment. refined slight cell increases samples, summarized Table 1. difference density map extra-framework densities largest (diameters Å) interaction molecules.39Li Vila G.H. Tsao al.Cryo-EM atomic surfaces frameworks.Matter. 1: 1-11Abstract (57) 40Katsoulidis A.P. Antypov Whitehead G.F.S. Carrington E.J. Adams D.J. Berry N.G. Darling G.R. Dyer M.S. Rosseinsky Conformational control tripeptide-based material.Nature. 565: 213-217Crossref (135) 41Hobday Woodall Lennox Frost Kamenev Düren Morrison C.A. Moggach S.A. Understanding ZIF-8 pressure crystallography computational modelling.Nat. 1429Crossref (85) 42Sotelo Allan D.R. Gregoryanz E.R. Howie K.V. Probert M.R. Wright P.A. Locating materials: cryogenic loading fuel-related Sc-based extreme pressures.Angew. 13332-13336Crossref ScholarTable 1Crystallographic information adsorbing G moleculesSamplea (Å)b (Å)c (Å)? (°)V (Å3)Crystallite Size (nm)Rwp (%)112.2631(1)30.1187(2)22.4758(1)96.8466(2)8,242.2145(2)4233.081 N6-mA12.2652(1)30.1198(2)22.4837(1)96.8263(2)8,247.1622(2)4123.501 A12.2627(1)30.1216(2)22.4815(1)96.8322(2)8,245.0605(2)4033.371 G12.2689(1)30.1170(2)22.4983(1)96.7925(2)8,254.8256(2)3993.84 Open table tab inspect compare ab initio theory (DFT) performed. molecule accessible area (12.5 4A 4B ). Three models taken account, depicted S6. energies I, II, III S2. Comparing models, note model I more energetically favorable than II suggests align head-to-tail channel compared conformations. Overall, strongest (?0.3678 eV) among weakest (?0.1256 eV), middle (?0.1726 Figures 4C–4E. clear recognized discriminated 4, isosurfaces most depletion around accumulation appears near Mn-O clusters Notably, there redistributions when enabling transfers framework.43Talin A.A. Centrone Ford A.C. Foster M.E. Stavila V. Haney Kinney R.A. Szalai Gabalyi F.E. Yoon H.P. al.Tunable electrical thin-film devices.Science. 343: 66-69Crossref (847) 44Dai Shen Zou Attomolar determination coumaphos displacement immunoassay oligonucleotide sensing.Anal. 2012; 84: 8157-8163Crossref (17) 45Hendon Tiana Conductive networks: fact fantasy?.Phys. Phys. 14: 13120-13132Crossref (225) Furthermore, projected state (DOS) calculation band mainly d states p -states C, N, O atoms. dominate Fermi level, localization electrons hybridization neighboring forming strong bonds. gap DOS given ?1.1 S7), indicating could act semiconductor. possibility especially systems suggested us detected distinguished signals.43Talin Go

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

N6-Methyladenine DNA Modification in Drosophila

DNA N(6)-methyladenine (6mA) modification is commonly found in microbial genomes and plays important functions in regulating numerous biological processes in bacteria. However, whether 6mA occurs and what its potential roles are in higher-eukaryote cells remain unknown. Here, we show that 6mA is present in Drosophila genome and that the 6mA modification is dynamic and is regulated by the Drosop...

متن کامل

Reversible Janus particle assembly via responsive host-guest interactions.

Reversible assembly of Janus particles was manipulated by host-guest interaction of β-cyclodextrin (β-CD) and azobenzene. One side of every Janus particle was modified with β-CD. Superstructures of Janus particles were formed by adding azobenzene-containing polymers to the dispersion of Janus particles. The superstructures were reversibly disassembled by adding α-CD or light irradiation.

متن کامل

N6-Methyladenine: A Conserved and Dynamic DNA Mark.

Chromatin, consisting of deoxyribonucleic acid (DNA) wrapped around histone proteins, facilitates DNA compaction and allows identical DNA codes to confer many different cellular phenotypes. This biological versatility is accomplished in large part by posttranslational modifications to histones and chemical modifications to DNA. These modifications direct the cellular machinery to expand or comp...

متن کامل

the effect of consciousness raising (c-r) on the reduction of translational errors: a case study

در دوره های آموزش ترجمه استادان بیشتر سعی دارند دانشجویان را با انواع متون آشنا سازند، درحالی که کمتر به خطاهای مکرر آنان در متن ترجمه شده می پردازند. اهمیت تحقیق حاضر مبنی بر ارتکاب مکرر خطاهای ترجمانی حتی بعد از گذراندن دوره های تخصصی ترجمه از سوی دانشجویان است. هدف از آن تاکید بر خطاهای رایج میان دانشجویان مترجمی و کاهش این خطاها با افزایش آگاهی و هوشیاری دانشجویان از بروز آنها است.از آنجا ک...

15 صفحه اول

N6-methyladenine: a potential epigenetic mark in eukaryotes

Methylation modifications in DNA in the forms of 5-methylcytosine (5mC) and N 6-methyladenine (6mA) are one of the most important epigenetic marks that have been proposed to regulate gene expression and control numerous cellular and biological processes. The prevailing view is that, while 5mC serves as the predominant type, if not the only type, of methylated base in mammals to regulate gene ex...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Matter

سال: 2021

ISSN: ['2604-7551']

DOI: https://doi.org/10.1016/j.matt.2020.12.016